Question	Answer	Mark	Comments	
1	$(PQ =) \mathbf{a} + \mathbf{b} + \mathbf{c}$ $(XY =) \frac{2}{3} \mathbf{a} + \mathbf{b} + \frac{2}{3} \mathbf{c}$ or	M1 M1	oe	
	$(XY =) -\frac{1}{3}\mathbf{a} + \mathbf{a} + \mathbf{b} + \mathbf{c} - \frac{1}{3}\mathbf{c}$ $(PQ =) \mathbf{a} + \mathbf{b} + \mathbf{c}$ and $(XY =) \frac{2}{3}\mathbf{a} + \mathbf{b} + \frac{2}{3}\mathbf{c}$ and $No, \text{ as } XY \text{ is not a multiple of } PQ$	A1	oe	
	Additional Guidance			

Q	Answer	Mark	Comments
	Alternative method 1: DH + HX		
	<i>HE</i> = a – b	M1	implied by $HX = \frac{1}{4}\mathbf{a} - \frac{1}{4}\mathbf{b}$
	$(b + \frac{1}{4}(a - b) =) b + \frac{1}{4}a - \frac{1}{4}b$	A1	
2(a)	$=\frac{1}{4}\mathbf{a}+\frac{3}{4}\mathbf{b}$		
_(:,	Alternative method 2: DE + EX		
	EH = b – a	M1	implied by $EX = \frac{3}{4}\mathbf{b} - \frac{3}{4}\mathbf{a}$
	$(a + \frac{3}{4}(b - a) =) a + \frac{3}{4}b - \frac{3}{4}a$	A1	
	$=\frac{1}{4}\mathbf{a}+\frac{3}{4}\mathbf{b}$		

Q	Answer	Mark	Comments	
	Alternative method 1: DF from $DE + EF = DE + \frac{1}{4}EG$			
	(EG =) - a + 9 b		oe	
	or	M1		
	$(EF =) -\frac{1}{4}\mathbf{a} + \frac{9}{4}\mathbf{b}$			
2(b)	$(EF =) -\frac{1}{4}\mathbf{a} + \frac{9}{4}\mathbf{b}$		oe	
	and	M1		
	$(DF =) \mathbf{a} - \frac{1}{4} \mathbf{a} + \frac{9}{4} \mathbf{b}$			
	$(DF =) \frac{3}{4} \mathbf{a} + \frac{9}{4} \mathbf{b}$	A 1		
	$(DF =) 3(\frac{1}{4}a + \frac{3}{4}b)$ and Yes	A1	oe using a different correct scalar multiple for <i>DF</i> and <i>DX</i>	

Q	Answer	Mark	Comments	
	Alternative method 2: DF from DG + GF = DG + $\frac{3}{4}$ GE			
	$(GE =) -9\mathbf{b} + \mathbf{a}$ or $(GF =) -\frac{27}{4}\mathbf{b} + \frac{3}{4}\mathbf{a}$	M1	oe	
2(b) cont	$(GF =) -\frac{27}{4}\mathbf{b} + \frac{3}{4}\mathbf{a}$ and $(DF =) 9\mathbf{b} - \frac{27}{4}\mathbf{b} + \frac{3}{4}\mathbf{a}$	M1	oe	
	$(DF =) \frac{3}{4} \mathbf{a} + \frac{9}{4} \mathbf{b}$	A1		
	$(DF =) 3(\frac{1}{4}\mathbf{a} + \frac{3}{4}\mathbf{b})$ and Yes	A1	oe using a different correct scalar multiple for <i>DF</i> and <i>DX</i>	

Q	Answer	Mark	Comments
	Alternative method 3: XF from XE + EF = $\frac{3}{4}$ HE + $\frac{1}{4}$ EG		
	$(XE =) \frac{3}{4} \mathbf{a} - \frac{3}{4} \mathbf{b}$		oe
	or	M1	
2(b) cont	$(EF =) -\frac{1}{4}\mathbf{a} + \frac{9}{4}\mathbf{b}$		
	$(XF =) \frac{3}{4} \mathbf{a} - \frac{3}{4} \mathbf{b} - \frac{1}{4} \mathbf{a} + \frac{9}{4} \mathbf{b}$	M1	oe
	$(XF =) \frac{2}{4} \mathbf{a} + \frac{6}{4} \mathbf{b}$		
	or	A1	
	$(XF =) \frac{1}{2} \mathbf{a} + \frac{3}{2} \mathbf{b}$		
	$(XF =) 2(\frac{1}{4}\mathbf{a} + \frac{3}{4}\mathbf{b})$ and Yes	A 1	oe using a different correct scalar multiple for XF and DX

Q	Answer	Mark	Comments	
	Alternative method 4: XF from XH + HG + GF = $\frac{1}{4}$ EH + HG + $\frac{3}{4}$ GE			
	$(XH =) = -\frac{1}{4}\mathbf{a} + \frac{1}{4}\mathbf{b}$		oe	
	or	M1		
	$(GF =) -\frac{27}{4} b + \frac{3}{4} a$			
2(b)	$(XF =) -\frac{1}{4}\mathbf{a} + \frac{1}{4}\mathbf{b} + 8\mathbf{b} - \frac{27}{4}\mathbf{b} + \frac{3}{4}\mathbf{a}$	M1	Oe	
cont	$(XF =) \frac{2}{4} \mathbf{a} + \frac{6}{4} \mathbf{b}$ or $(XF =) \frac{1}{2} \mathbf{a} + \frac{3}{2} \mathbf{b}$	A1		
	$(XF =) 2(\frac{1}{4}\mathbf{a} + \frac{3}{4}\mathbf{b})$ and Yes	A1	oe using a different correct scalar multiple for XF and DX	
	Additional Guidance			
	Method marks may be awarded for correct work seen on diagram or in working, with no or incorrect answer, even if this is seen amongst multiple attempts			

Q	Answer	Mark	Comment	
	Any one of $(\overrightarrow{QW} =) \mathbf{a} + \mathbf{b} - \frac{1}{3}\mathbf{a}$ $(\overrightarrow{WX} =) \frac{1}{3}\mathbf{a} + \frac{1}{2}\mathbf{b}$ $(\overrightarrow{QX} =) \mathbf{a} + \mathbf{b} + \frac{1}{2}\mathbf{b}$	M1	oe eg $(\overrightarrow{QW} =) \frac{2}{3} \mathbf{a} + \mathbf{b}$ or $(\overrightarrow{WX} =) -\frac{2}{3} \mathbf{a} + \mathbf{b} + \mathbf{a} - \frac{1}{2} \mathbf{b}$ or $(\overrightarrow{QX} =) \mathbf{a} + \frac{3}{2} \mathbf{b}$ allow use of \overrightarrow{WQ} and/or \overrightarrow{XW} and/or \overrightarrow{XQ}	
3	Any two of $(\overrightarrow{QW} =) \mathbf{a} + \mathbf{b} - \frac{1}{3}\mathbf{a}$ $(\overrightarrow{WX} =) \frac{1}{3}\mathbf{a} + \frac{1}{2}\mathbf{b}$ $(\overrightarrow{QX} =) \mathbf{a} + \mathbf{b} + \frac{1}{2}\mathbf{b}$	M1dep	oe allow use of \overrightarrow{WQ} and/or \overrightarrow{XW} and/or \overrightarrow{XQ}	
	Any valid pair of vectors and indication that one vector is a multiple of the other $eg \ \overrightarrow{QW} = \frac{2}{3}\mathbf{a} + \mathbf{b}$ and $\overrightarrow{WX} = \frac{1}{3}\mathbf{a} + \frac{1}{2}\mathbf{b}$ and $\frac{2}{3}\mathbf{a} + \mathbf{b} = 2\left(\frac{1}{3}\mathbf{a} + \frac{1}{2}\mathbf{b}\right)$	A1	eg $\overrightarrow{QW} = \frac{2}{3}\mathbf{a} + \mathbf{b}$ and $\overrightarrow{XQ} = -\mathbf{a} - \frac{3}{2}\mathbf{b}$ and $3\overrightarrow{QW} = -2\overrightarrow{XQ}$ or $\overrightarrow{QX} = \mathbf{a} + \frac{3}{2}\mathbf{b}$ and $\overrightarrow{WX} = \frac{1}{3}\mathbf{a} + \frac{1}{2}\mathbf{b}$ and \overrightarrow{WX} is $\frac{1}{3}$ of \overrightarrow{QX} and \overrightarrow{WX} is parallel to \overrightarrow{QX}	
	Additional Guidance			
	Up to M2 may be awarded for correct work with no answer, or incorrect answer, even if this is seen amongst multiple attempts			

Q	Answer	Mark	Comments	
	One correct expression eg $(\overrightarrow{DE} =) 6\mathbf{a} + \mathbf{b} + 2\mathbf{a} - 5\mathbf{b}$ or $(\overrightarrow{DF} =) 6\mathbf{a} + \mathbf{b} + 4\mathbf{a} - 6\mathbf{b}$ or $(\overrightarrow{EF} =) -2\mathbf{a} + 5\mathbf{b} + 4\mathbf{a} - 6\mathbf{b}$	M1	oe eg $(\overrightarrow{ED} =)$ -6a - b - 2a + 5b or $(\overrightarrow{FD} =)$ -6a - b - 4a + 6b or $(\overrightarrow{FE} =)$ 2a - 5b - 4a + 6b accept unprocessed bracket eg $(\overrightarrow{EF} =)$ -(2a - 5b) + 4a -	s
	Two correct expressions from \overrightarrow{DE} \overrightarrow{DF} \overrightarrow{EF}	M1dep	oe eg \overrightarrow{DE} and \overrightarrow{FD} accept unprocessed bracket	s
	Two fully simplified expressions from $(\overrightarrow{DE} =) 8\mathbf{a} - 4\mathbf{b} (\overrightarrow{DF} =) 10\mathbf{a} - 5\mathbf{b}$ $(\overrightarrow{EF} =) 2\mathbf{a} - \mathbf{b}$	A1	oe eg $(\overrightarrow{DE} =) 8\mathbf{a} - 4\mathbf{b}$ and $(\overrightarrow{FD} =) -10$	-10 a + 5 b
4	Two fully simplified expressions from $(\overrightarrow{DE} =) 8\mathbf{a} - 4\mathbf{b}$ $(\overrightarrow{DF} =) 10\mathbf{a} - 5\mathbf{b}$ $(\overrightarrow{EF} =) 2\mathbf{a} - \mathbf{b}$ and valid indication that the vectors are parallel	A1	eg $(\overrightarrow{DE}=)$ 8a – 4b and $(\overrightarrow{FE}=)$ –2a + b and 8a – 4b = –4(–2a + b) or $(\overrightarrow{DF}=)$ 10a – 5b and $(\overrightarrow{EF}=)$ 2a – b and $\overrightarrow{DF}=5\overrightarrow{EF}$	
	Additional Guidance			
	Condone absence of vector notation			
	Condone eg \overrightarrow{DCE} or D to E for \overline{DE}			
	If the only two correct expressions are eg \overrightarrow{DE} and \overrightarrow{ED} the maximum possible mark is M1			
	Only combining the three given vectors			Zero
	$\overrightarrow{DF} = \overrightarrow{DE} + \overrightarrow{EF}$ is not a valid indication			
	Stating eg \overrightarrow{DF} is a (scalar) multiple of \overrightarrow{EF} is not enough for the final A1			